Caenorhabditis elegans Aurora A kinase is required for the formation of spindle microtubules in female meiosis

نویسندگان

  • Eisuke Sumiyoshi
  • Yuma Fukata
  • Satoshi Namai
  • Asako Sugimoto
  • Susan Strome
چکیده

In many animals, female meiotic spindles are assembled in the absence of centrosomes, the major microtubule (MT)-organizing centers. How MTs are formed and organized into meiotic spindles is poorly understood. Here we report that, in Caenorhabditis elegans, Aurora A kinase/AIR-1 is required for the formation of spindle microtubules during female meiosis. When AIR-1 was depleted or its kinase activity was inhibited in C. elegans oocytes, although MTs were formed around chromosomes at germinal vesicle breakdown (GVBD), they were decreased during meiotic prometaphase and failed to form a bipolar spindle, and chromosomes were not separated into two masses. Whereas AIR-1 protein was detected on and around meiotic spindles, its kinase-active form was concentrated on chromosomes at prometaphase and on interchromosomal MTs during late anaphase and telophase. We also found that AIR-1 is involved in the assembly of short, dynamic MTs in the meiotic cytoplasm, and these short MTs were actively incorporated into meiotic spindles. Collectively our results suggest that, after GVBD, the kinase activity of AIR-1 is continuously required for the assembly and/or stabilization of female meiotic spindle MTs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TAC-1, a Regulator of Microtubule Length in the C. elegans Embryo

Regulation of microtubule growth is critical for many cellular processes, including meiosis, mitosis, and nuclear migration. We carried out a genome-wide RNAi screen in Caenorhabditis elegans to identify genes required for pronuclear migration, one of the first events in embryogenesis requiring microtubules. Among these, we identified and characterized tac-1 a new member of the TACC (Transformi...

متن کامل

Microtubule-severing activity of the AAA+ ATPase Katanin is essential for female meiotic spindle assembly.

In most animals, female meiotic spindles are assembled in the absence of centrosomes. How microtubules (MTs) are organized into acentrosomal meiotic spindles is poorly understood. In Caenorhabditis elegans, assembly of female meiotic spindles requires MEI-1 and MEI-2, which constitute the microtubule-severing AAA+ ATPase Katanin. However, the role of MEI-2 is not known and whether MT severing i...

متن کامل

Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans

Centrosomes mature as cells enter mitosis, accumulating gamma-tubulin and other pericentriolar material (PCM) components. This occurs concomitant with an increase in the number of centrosomally organized microtubules (MTs). Here, we use RNA-mediated interference (RNAi) to examine the role of the aurora-A kinase, AIR-1, during centrosome maturation in Caenorhabditis elegans. In air-1(RNAi) embry...

متن کامل

The Chromosomal Passenger Complex Is Required for Chromatin-Induced Microtubule Stabilization and Spindle Assembly

In cells lacking centrosomes, such as those found in female meiosis, chromosomes must nucleate and stabilize microtubules in order to form a bipolar spindle. Here we report the identification of Dasra A and Dasra B, two new components of the vertebrate chromosomal passenger complex containing Incenp, Survivin, and the kinase Aurora B, and demonstrate that this complex is required for chromatin-...

متن کامل

Assembly of Caenorhabditis elegans acentrosomal spindles occurs without evident microtubule-organizing centers and requires microtubule sorting by KLP-18/kinesin-12 and MESP-1

Although centrosomes contribute to spindle formation in most cell types, oocytes of many species are acentrosomal and must organize spindles in their absence. Here we investigate this process in Caenorhabditis elegans, detailing how acentrosomal spindles form and revealing mechanisms required to establish bipolarity. Using high-resolution imaging, we find that in meiosis I, microtubules initial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2015